

Coronagraphic Phase Retrieval

Optical Society of America Annual Meeting Santa Clara, CA 9/26/99 - 10/1/99

Richard. G. Lyon
Timothy P. Murphy
John E. Dorband
J. Michael Hollis
NASA/Goddard Space Flight Center
Greenbelt, MD.

<u>Abstract</u>

We discuss and show results of simulated high spatial frequency *phase retrieval* through a Lyot type type *coronagraph* with a 7 segment primary mirror. We desire to accurately determine the wavefront spatial frequency components responsible for focal plane "speckle" and, ideally, remove them, effectively creating a dark hole in the focal plane for direct planetary detection.

Viewgraphs at http://jansky.gsfc.nasa.gov/OSCAR Report at http://ngst.gsfc.nasa.gov/science/isimpage.html

Coronagraphic Precision Wavefront Sensing

- High Contrast Origins Science Strategies (HCOSS)
 Coronagraph proposed as a science instrument for NGST.
 J.Trauger (JPL), R.Lyon(GSFC) et.al.
- NGST => segmented actuated PM, 6 DOF SM and active optical bench <=> WFE~10 cycles/aperture, < $\lambda/14$ diffraction limited
- Coronagraph =>speckle limited due to coherent scatter from residual WFE.
- Studied high spatial freq wavefront sensing, via phase retrieval, "tweeter" DM to remove speckle.
 - phase retrieval "sees" entire optical path to focal plane of coronagraph.
 - little additional hardware required.
- Simulate phase retrieval through coronagraph
 - coronagraph removes diffraction core in PSF.
 - Apodized PSFs => greater SNR for in PSF wings.
 - hypothesize
 - higher accuracy for high spatial freq. phase retrieval
 - lower accuracy for low spatial frequency phase retrieval
- Demostrated proof of principle

Principle of Lyot Coronagraph

R.G. Lyon OSCAR Project 9/30/99

Universities Space Research Association / Center of Excellence in Space Data and Information Sciences

Raw PSF without Coronagraph

Coronagraphic PSF **Before** Phase Retrieval

Speckle Removal

images are not on same color scale and do not have same logarithmic stretchy/99

Misell Type Phase Retrieval Simulation

- 20 x 20 grid of mid-range DM => 10 cycles/aperture correction
- Occulting mask with ave radius of 10 rings (10 λ/D).
- Nulls at 57% and 88% Lyot stop, 88% Null for max photons
- 12 bit detector, 5 ADU gaussian noise, quantization, no jitter
- 4 psfs $\{-2,-1,+1,+2\}$ λ of focus, scaled to max dynamic range.
- Used 4 psf Misell type algorithm w/zero phase as start pt.
- Rapid convergence, only few cases run to date.
- Will run large Monte-Carlo simulation.

PSD of Mid-range DM Phase Correction

- Total WFE: $\sigma_T \sim \lambda/14$ after Mid range DM,
- PSD(f) ~ 1/f²
- for f > 10 cycles/aperture, $\sigma(WFE) = \lambda/40$ (HST).
- In simulation assumed roll up to 10 cyc/aper.

Wavefront PSD after mid-range DM correction

4 PSF Misell Type Phase Retrieval Algorithm

R.G. Lyon OSCAR Project 9/30/99

Coronagraphic PSF

Before Phase Retrieval

Speckle Removal

Coronagraphic PSF

After Phase Retrieval

Speckle Removal

Dark Hole

images are on same color scale and have same logarithmic stretch

Results and Future Plans

Results

- Coronagraphic Phase Retrieval possible with segmented mirrors.
- Low freq PR induced errors should be removed before "tweeter" DM.
- Accuracy/Precision not yet known.
- Effects of jitter not yet known.
- Effects of fit to "tweeter" not yet known.

Plans

- Run large scale Monte-Carlo simulation to assess accuracy/precision
- Include:
 - ranges of low, mid and hi-spatial frequencies.
 - telescope LOS jitter.
 - noise, quantization, sampling, pixelization
 - residuals due to mid- and hi-range DMs
 - etc...

